Vectors - Mark Scheme

June 2017 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Notes	Marks
6.	$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}; \overline{OA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} \text{ lies on } l_1 \text{Let } \theta_{\text{Acute}} \text{ be the acute angle between } l_1 \text{ and } l_2$			
(a)	$ \begin{cases} l_1 = l_2 \Rightarrow \} \ 28 - 5\lambda = 3 \ \{ \Rightarrow \lambda = 5 \} \\ \text{or } 4 - \lambda = 5 + 3\mu \text{ and } 4 + \lambda = 1 - 4\mu \ \{ \Rightarrow \mu = -2 \} \end{cases} $ or $ \lambda = 5 \text{ or } \mu = -2 \text{ (Can be implied)}. $			B1
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$		and solves to find λ and/or μ tutes their value for λ into l_1 or their value for μ into l_2	M1
	So, X(-1, 3, 9) (-1, 3, 9) o	$r \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix}$ or $-i$	$\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}$ or condone $\begin{bmatrix} -1 \\ 3 \\ 9 \end{bmatrix}$	Al cao
				[3]
(b) Way 1	$\mathbf{d_1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ Realisation that the dot product is required between $\mathbf{d_1}$ and $\mathbf{d_2}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_2}$			M1
	$\cos \theta = \frac{\pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$	$\left\{=\frac{-7}{\sqrt{27}.\sqrt{25}}\right\}$	dependent on the 1 st M mark. Applies dot product formula between d ₁ and d ₂ or a multiple of d ₁ and d ₂	dM1
	$\{\theta = 105.6303588 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		awrt 74.37 seen in (b) only	A1
	,			[3]
(c)	$\overline{AX} = \overline{OX} - \overline{OA} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}$			
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9$	Full n	nethod for finding AX or XA	M1
	() 943 seen in (c) only			Al cao
	Note: You cannot recover work for par	t (c) in either pa	art (d) or part (e).	[2]
(d) Way 1	$\frac{1}{9\sqrt{3}} = \tan(74.36964)$ their AX		(their $ \overline{AX} $) $\tan \theta$, where θ is	M1
		heir acute or ob	otuse angle between l_1 and l_2	4.1
	<i>YA</i> = 55.71758 = 55.7 (1 dp)		anything that rounds to 55.7	A1
				[2]

(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B,$	$\lambda = 3.5 \text{ or } \lambda = 0.5$	
Way 1	$ \overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix} $	Substitutes either $\lambda = \frac{(\text{their } \lambda_X \text{ found in } (a)) + 2}{2}$ or $\lambda_\beta = 3 - \frac{(\text{their } \lambda_X \text{ found in } (a))}{2}$ into l_1	M1;
	$\overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct. (Also allow coordinates). Both position vectors are correct.	A1
		(Also allow coordinates).	[3]
			13
Question Number	Scheme	Notes	Marks
6. (e)	$\left\{ AX = 2AB \Rightarrow AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \right.$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX}$	
Way 2	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = $\pm \left[\text{(their } \overrightarrow{OX}) - \overrightarrow{OA} \right]$	M1;
	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 25.5 \\ 4.5 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$\begin{pmatrix} 16 & 6 & 6 \end{pmatrix} = \begin{pmatrix} 15 & 15 & 15 \\ 6 & 3 & 6 \end{pmatrix}, = \begin{pmatrix} 25.5 & 4.5 \\ 4.5 & 6 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3	$\overline{AB} = \begin{pmatrix} 4 - \lambda \\ 28 - 5\lambda \\ 4 + \lambda \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 - \lambda \\ 10 - 5\lambda \\ -2 + \lambda \end{pmatrix} = \begin{pmatrix} 1(2 - \lambda) \\ 5(2 - \lambda) \\ -1(2 - \lambda) \end{pmatrix}; \overline{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \qquad AX^2 = 243 \text{ P}$ $AB^2 = 27(2 - \lambda)^2$		
	$AX = 2AB \Rightarrow AX^2 = 4AB^2 \Rightarrow 243 = 4(27)(2)$	$(2-\lambda)^2 \Rightarrow (2-\lambda)^2 = \frac{9}{4} \text{ or } 27\lambda^2 - 108\lambda + \frac{189}{4} = 0$	
	or $108\lambda^2 - 432\lambda + 189 = 0$ or $4\lambda^2 - 16\lambda +$	$7 = 0 \Rightarrow \lambda = 3.5 \text{ or } \lambda = 0.5$	
	(4) (-1) (05)	Full method of solving for λ the equation	
	$\overline{OB} = \begin{bmatrix} 28 & +3.5 & -5 \\ -5 & -5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 10.5 \end{bmatrix}$	$AX^2 = 4AB^2$ using (their \overline{AX}) and \overline{AB}	M
	$ \overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix} $	and substitutes at least one of their values for λ into l	M1;
	$\overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$ \begin{array}{c c} & -5 & -5 \\ \hline 4 & -5 & -5 \\ \hline 4.5 & -5 \\ \hline 4.5$	Both position vectors are correct (Also allow coordinates)	A1
	Note: $AX = 2AB \Rightarrow \overline{AX} = \pm 2\overline{AB}$. Hence,	$\lambda = 3.5$ or $\lambda = 0.5$ can be found from solving either	[3]

 $x: -3 = \pm 2(2 - \lambda)$ or $y: -15 = \pm 2(10 - 5\lambda)$ or $z: -3 = \pm 2(-2 + \lambda)$

	$ \overline{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix} $ $ \overline{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix} $	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{XA} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{XA} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX}) At least one position vector is correct (Also allow coordinates) Both position vectors are correct (Also allow coordinates)	M1; A1 A1 [3]		
6. (e) Way 5	$\overline{OB} = 0.5 \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;		
	$ \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ $\begin{pmatrix} 3.5 \\ \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1		
			[3]		
Question Number	Scheme	Notes	Marks		
6. (e) Way 6	$\left\{ \overline{AX} = 9\sqrt{3}, d_1 = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 = \frac{9\sqrt{3}}{3\sqrt{3}} = \frac{9\sqrt{3}}$	$\Rightarrow \overrightarrow{AX} = 3\mathbf{d}_1; \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2} (3\mathbf{d}_1)$			
	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	$ \frac{\text{Applies either}}{\overrightarrow{OA} + 0.5(K\mathbf{d}_1) \text{ or } \overrightarrow{OA} - 0.5(K\mathbf{d}_1),} $ where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$	M1;		
	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
	$\left(\begin{array}{c}6\end{array}\right) \left(\left(\begin{array}{c}1\end{array}\right)\right) \left(\begin{array}{c}4.5\end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1		
			[3]		
	N. d. Ml. and he invested by the	Question 6 Notes	41		
6. (a)		correct follow through coordinates from their λ or fr	om their μ		
(b)	Note Evaluating the dot product (i.e. (– for the M1, dM1 marks.	Evaluating the dot product (i.e. $(-1)(3) + (-5)(0) + (1)(-4)$) is not required for the M1, dM1 marks.			
		For M1 dM1: Allow one slip in writing down their direction vectors, d ₁ and d ₂			
	Note Allow M1 dM1 for	1 2			
	$(\sqrt{(-1)^2 + (-5)^2 + (1)^2}.\sqrt{(3)^2 + (0)^2})$	$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right) \cos \theta = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \left\langle \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \right.$			
	Note $\theta = 1.297995^{\circ}$, (without evidence	e of awrt 74.37) is A0			

6. (b)	Altern	ative Method: Vector Cross Product			
Way 2		apply this scheme if it is clear that a vector cross pr	roduct method is being applied.		
•		$= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} = 20\mathbf{i} - \mathbf{j} + \mathbf{k}$		M1	
		$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$	Applies the vector product formula between \mathbf{d}_1 and \mathbf{d}_2 or a multiple of \mathbf{d}_1 and \mathbf{d}_2	dM1	
	$\sin \theta$	$= \frac{\sqrt{626}}{\sqrt{27}.\sqrt{25}} \Rightarrow \theta = 74.36964117 = 74.37 \text{ (2 dp)}$ awrt 74.37 seen in (b) only			
				[3]	
6. (c)	M1	Finds the difference between their \overrightarrow{OX} and \overrightarrow{OA} and \overrightarrow{OA} and \overrightarrow{OA} and \overrightarrow{OA} applies $\left \left(\text{their } \lambda_X \text{ found in } (a) \right) - 2 \right \sqrt{(-1)^2 + (-1)^2}$	<u></u> .	d AX or XA	
	Note	te For M1: Allow one slip in writing down their \overrightarrow{OX} and \overrightarrow{OA}			
	Note	Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$			
(e)	Note	Imply M1 for no working leading to any two compo	ments of one of the \overline{OR} which are co	rrect	

Question Number	Scheme	Notes	Marks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$	$\frac{\text{their } \overrightarrow{AX} }{YA} = \tan(90 - \theta) \text{ or } AY = \frac{\text{their } \overrightarrow{AX} }{\tan(90 - \theta)},$ where θ is the acute or obtuse angle between l_1 and l_2	Ml
	YA = 55.71758 = 55.7 (1 dp)	anything that rounds to 55.7	A1
			[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964")}$	$\frac{YA}{\sin \theta} = \frac{\text{their } \overline{AX} }{\sin(90 - \theta)} \text{ o.e., where } \theta \text{ is the acute or obtuse angle between } l_1 \text{ and } l_2$	M1
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758.$	= 55.7 (1 dp) anything that rounds to 55.7	Al
			[2]

$$\mathbf{6.}(\mathbf{d})$$

$$\mathbf{Way 4}$$

$$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \quad \overline{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix}$$

$$\overline{YA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu \\ 15 \\ 5+4\mu \end{pmatrix}$$

$$\overline{YA} \bullet \mathbf{d}_{1} = 0 \Rightarrow \begin{pmatrix} -3-3\mu \\ 15 \\ 5+4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} = 0$$

$$\Rightarrow 3+3\mu-75+5+4\mu=0 \Rightarrow \mu = \frac{67}{7}$$

$$YA^{2} = \begin{pmatrix} -3-3\left(\frac{67}{7}\right)^{2} + \left(15\right)^{2} + \left(5+4\left(\frac{67}{7}\right)\right)^{2}$$

$$\Rightarrow 55.71758... = 55.7 \text{ (1 dp)}$$

$$\Rightarrow \mathbf{Note:} \quad \overline{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}, \quad \overline{AY} = -\frac{222}{7}\mathbf{i} + 15\mathbf{j} + \frac{303}{7}\mathbf{k}$$

$$(Allow a sign slip in copying \mathbf{d}_{1})
$$Applies \quad \overline{YA} \bullet \mathbf{d}_{1} = 0 \text{ or } \overline{AY} \bullet \mathbf{d}_{1} = 0$$

$$\text{or } \overline{YA} \bullet (K\mathbf{d}_{1}) = 0 \text{ or } \overline{AY} \bullet (K\mathbf{d}_{1}) = 0$$

$$\text{to find } \mu \text{ and applies Pythagoras to find a numerical expression for } AY^{2} \text{ or for the distance } AY$$$$

June 2016 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scho	eme		Notes	Mar	rks
8.	$l_1: \mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}. \overline{OA} \text{ occurs when } \mu = 1. \overline{OP} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$					
(a)	A(3,5,0)			(3, 5, 0)	B1	
				1		[1]
(b)	$\{l_2:\}$ $\mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$	with	either $\mathbf{a} = \mathbf{i} + 5\mathbf{j} +$	$-\mu \mathbf{d}, \mathbf{a} + t\mathbf{d}, \mathbf{a} \neq 0, \mathbf{d} \neq 0$ $2\mathbf{k} \text{ or } \mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$ a multiple of $-5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$	M1	
	(2) (3)	Correct	vector equation usi	$\log \mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$	A1	
	${f d}_2$ is the direction vector of ${m l}_2$	Do no	tallow l_2 : or $l_2 \rightarrow$	or $l_1 = $ for the A1 mark.		[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$	-2 0 2				
			F	ull method for finding AP	M1	
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$			2√2	A1	
						[2]

_					_	
(d)	So $\overline{AP} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$	$ \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $		sation that the dot product is uired between $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	M1	
	$\left\{\cos\theta = \right\} \frac{\begin{bmatrix} -2 \\ 0 \\ \overline{AP} \bullet \mathbf{d}_2 \end{bmatrix}}{\begin{bmatrix} \overline{AP} \mid \mathbf{d}_2 \end{bmatrix}} = \frac{\begin{pmatrix} -5 \\ 4 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}} $ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$ $\frac{\mathbf{dependent on the previous M mark.}}{\mathbf{dependent on the previous M mark.}}$		dM1			
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$		{c	$\left.\cos\theta\right\} = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$	A1 cso	
						[3]
(e)	$\left\{ \text{Area } APE = \right\} \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta \qquad \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta \text{ or } \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin(\text{their } \theta)$		M1			
	= 2.4		2	2.4 or $\frac{12}{5}$ or $\frac{24}{10}$ or awrt 2.40	A1	
						[2]
(f)	$\overrightarrow{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k}$ and $PE =$	their $2\sqrt{2}$ fr	om part (c)			
	$\left\{ PE^2 = \right\} \left(-5\lambda \right)^2 + \left(4\lambda \right)^2 + \left(3\lambda \right)^2 = \left(\text{their} \right)^2$	$(2\sqrt{2})^2$		This mark can be implied.	M1	
	$\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \ \lambda = \pm \frac{2}{5}$			Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	A1	
	$l_2: \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ dependent on the previous M mark Substitutes at least one of their values of λ into l_2 .		dM1			
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{4} \end{pmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{16} \end{pmatrix} \text{ or } $	-1 6.6	At lea	st one set of coordinates are correct.	A1	
	$\left[\begin{array}{c} 3\\ \frac{4}{5} \end{array}\right] \left[\begin{array}{c} 0.8 \end{array}\right] \left[\begin{array}{c} 3\\ \frac{16}{5} \end{array}\right]$	3.2	Both set	ts of coordinates are correct.	A1	
						[5]
						15

		Question 8 Notes		
8. (a)	B1	Allow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix}$ or benefit of the doubt 5		
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$ i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where \mathbf{d} is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.		
	Note	Allow the use of parameters μ or t instead of λ .		
(c)	M1	Finds the difference between \overline{OP} and their \overline{OA} and applies Pythagoras to the result to find AP		
	Note	Allow M1A1 for $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.		

(d)	Note	For both the M1 and dM1 marks \overline{AP} (or \overline{PA}) must be the vector used in part (c) or the difference \overline{OP} and their \overline{OA} from part (a).			
	Note	Applying the dot product formula correctly without $\cos \theta$ as the subject is fine for M1dM1			
	Note				
	Note	In part (d) allow one slip in writing \overline{AP} and \mathbf{d}_2			
	Note	$\cos \theta = \frac{-10 + 0 - 6}{\sqrt{8} \cdot \sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso			
	Note	Give M1dM1A1 for $\{\cos \theta =\} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8}.10\sqrt{2}} = \frac{20+12}{40} = \frac{4}{5}$			
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta = 0.8$ followed by 36.869 °			
	Alternativ	ve Method: Vector Cross Product			
	Only app	ly this scheme if it is clear that a candidate is applying a vector cross product method.			
	$\overline{AP} \times \mathbf{d}_2$	$= \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{bmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k} $ Realisation that the vector cross product is required between their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K \mathbf{d}_2 \text{ or } \pm K \mathbf{d}_1$			
	sin	$\theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$ Applies the vector product formula between their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K \mathbf{d}_2$ or $\pm K \mathbf{d}_1$			
		$\sin \theta = \frac{12}{\sqrt{8} \cdot \sqrt{50}} = \frac{3}{5} \Rightarrow \frac{\cos \theta}{5} = \frac{4}{5} \qquad \cos \theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20} \text{A1}$			
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40			
	Note	Candidates must use their θ from part (d) or apply a correct method of finding			
		their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$			
		Question 8 Notes Continued			
8. (f)	Note Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorrect working				
	SC Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no working				
	Note Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$				
	Note	Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})$ or equivalent			
	Note	Give 1 st M1 for $\lambda = \frac{\text{their } AP = ^2 2\sqrt{2}^{-1}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$			

is M1A1

The 2^{nd} dM1 in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from their values of λ .

Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.

Note

Note

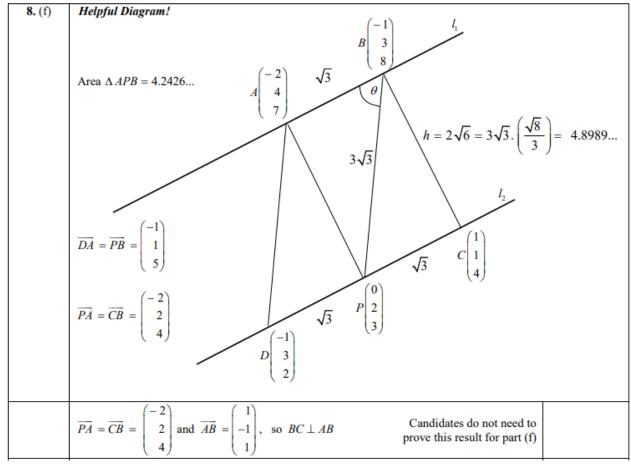
Note

	Putting l_2 equal to A gives $\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix}$	Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method.	
	Putting $\lambda \mathbf{d}_2 = \overline{AP}$ gives $ \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.	
General	You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1		
General	You can follow through their \mathbf{d}_2 in part (b) for ((d) M1dM1, (f) M1dM1.	

June 2015 Mathematics Advanced Paper 1: Pure Mathematics 4

Question			
Number	Scheme		Marks
	$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}. \text{ Let } 6$ Note: You can mark parts (a) and (b) together.	θ = acute angle between l_1 and l_2 .	
(a)	$\{l_1 = l_2 \Rightarrow \mathbf{i}:\} \ 5 = 8 + 3\mu \Rightarrow \mu = -1$	Finds μ and substitutes their μ into l_2	M1
	So, $\left\{ \overline{OA} \right\} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} - 1 \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}$	$5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ or $\begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}$ or $(5, 1, 3)$	A1
(b)	$\{\mathbf{j}\colon -3+\lambda=5+4\mu\Rightarrow\} -3+\lambda=5+4(-1)\Rightarrow \lambda=4$	Equates j components, substitutes their μ and solves to give $\lambda =$	M1
	$p - 3(4) = -2 - 5(-1) \Rightarrow \underline{p = 15}$ or $\mathbf{k} : p - 3\lambda = 3 \Rightarrow$ their " $p - 3$ subs	components, substitutes their λ and their μ and solves to give $p = \dots$ or equates k components to give $-3\lambda = \text{the } \mathbf{k}$ value of A found in part (a)", stitutes their λ and solves to give $p = \dots$	M1
	$p - 3(4) = 3 \Rightarrow \underline{p = 15}$	p = 15	A1
			[3]

	J	,
(c)	$\mathbf{d_1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \ \mathbf{d_2} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$ Realisation that the dot product is required between $\pm A\mathbf{d_1}$ and $\pm B\mathbf{d_2}$.	M1
	$\cos \theta = \pm K \left(\frac{0(3) + (1)(4) + (-3)(-5)}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}} \right)$ An attempt to apply the dot product formula between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	dM1 (A1 on ePEN)
	$\cos \theta = \frac{19}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \text{ (2 dp)}$ anything that rounds to 31.82	A1
(d)	$\overline{OB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix}; \overline{AB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ or } \overline{AB} = 2\begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix}$ See notes $ \overline{AB} = \sqrt{6^2 + 8^2 + (-10)^2} \left\{ = 10\sqrt{2} \right\}$	[3] M1
	Writes down a correct trigonometric equation involving	
	$\frac{d}{10\sqrt{2}} = \sin \theta$ the shortest distance, d. Eg: $\frac{d}{\text{their } AB} = \sin \theta$, oe.	dM1
	$d = 10\sqrt{2} \sin 31.82 \Rightarrow d = 7.456540753 = 7.46 (3sf)$ anything that rounds to 7.46	A1
		[3]
4. (b)	Alternative method for part (b)	11
(8)	$\begin{cases} 3 \times \mathbf{j} : -9 + 3\lambda = 15 + 12\mu \\ \mathbf{k} : p - 3\lambda = -2 + 5\mu \end{cases} p - 9 = 13 + 7\mu $ Eliminates λ to write down an equation in p and μ	1 1 1 1
	Substitutes their μ and solves to give $p-9=13+7(-1) \Rightarrow p=15$	e MI
	p = 15	A1
4. (d)	Alternative Methods for part (d) Let X be the foot of the perpendicular from B onto l_1	
	$\mathbf{d}_{1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \overrightarrow{OX} = \begin{pmatrix} 5 \\ -3 \\ 15 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 + \lambda \\ 15 - 3\lambda \end{pmatrix}$	
	$\overline{BX} = \begin{pmatrix} 5 \\ -3 + \lambda \\ 15 - 3\lambda \end{pmatrix} - \begin{pmatrix} 11 \\ 9 \\ -7 \end{pmatrix} = \begin{pmatrix} -6 \\ -12 + \lambda \\ 22 - 3\lambda \end{pmatrix}$	
	Method 1	
	(Allow a sign slip in copying d	
	$\overline{BX} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -6 \\ -12 + \lambda \\ 22 - 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = -12 + \lambda - 66 + 9\lambda = 0$ $\begin{array}{c} \text{copying } \mathbf{d}_1 \\ \text{Applies } \overline{BX} \bullet \mathbf{d}_1 = 0 \text{ and } \\ \text{solves the resulting } \end{array}$	
	leading to $10\lambda - 78 = 0 \implies \lambda = \frac{39}{100}$ equation to find	i
	5 a value for λ	


$\overline{BX} = \begin{pmatrix} -6 \\ -12 + \frac{39}{5} \\ 22 - 3\left(\frac{39}{5}\right) \end{pmatrix} = \begin{pmatrix} -6 \\ -\frac{21}{5} \\ -\frac{7}{5} \end{pmatrix}$			Substitutes their value of λ into their \overline{BX} . Note: This mark is dependent upon the previous M1 mark.	dM1
$d = BX = \sqrt{\left(-6\right)^2 + \left(-\frac{21}{5}\right)^2 + \left(-\frac{7}{5}\right)^2} = 7.45654$	10753		awrt 7.46	A1
Method 2				
Let $\beta = \overrightarrow{BX} ^2 = 36 + 144 - 24\lambda + \lambda^2 + 484 - 132$ $= 10\lambda^2 - 156\lambda + 664$ So $\frac{d\beta}{d\lambda} = 20\lambda - 156 = 0 \implies \lambda = \frac{39}{5}$	$2\lambda + 9\lambda^2$	f	and $\beta = \left \overline{BX} \right ^2$ in terms of λ , finds $\frac{d\beta}{d\lambda}$ and sets this result hal to 0 and finds a value for λ .	M1
$\left \overline{BX} \right ^2 = 10 \left(\frac{39}{5} \right)^2 - 156 \left(\frac{39}{5} \right) + 664 = \frac{278}{5}$			value of λ into their $\left \overrightarrow{BX} \right ^2$. mark is dependent upon the previous M1 mark.	dM1
$d = BX = \sqrt{\frac{278}{5}} = 7.456540753$			awrt 7.46	A1
0 1	4 37 4			

	Question 4 Notes			
4. (a)	M1	Finds μ and substitutes their μ into l_2		
	A1	Point of intersection of $5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Allow $\begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}$ or $(5, 1, 3)$.		
	Note	You cannot recover the answer for part (a) in part (c) or part (d).		
(b)	M1	Equates j components, substitutes their μ and solves to give $\lambda =$		
	M1	Equates k components, substitutes their λ and their μ and solves to give $p =$		
		or equates k components to give their " $p-3\lambda$ = the k value of A" found in part (b).		
	A1	p = 15		
(c)	NOTE	Part (c) appears as M1A1A1 on ePEN, but now is marked as M1M1A1.		
	M1	Realisation that the dot product is required between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.		
	Note	Allow one slip in candidates copying down their direction vectors, $\mathbf{d_1}$ and $\mathbf{d_2}$.		
	dM1	dependent on the FIRST method mark being awarded.		
		An attempt to apply the dot product formula between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.		
	A1	anything that rounds to 31.82. This can also be achieved by $180 - 148.1796 = awrt 31.82$		
	Note	$\theta = 0.5553^{\circ}$ is A0.		
	Note	M1A1 for $\cos \theta = \left(\frac{0 - 16 - 60}{\sqrt{(0)^2 + (4)^2 + (-12)^2}} \cdot \sqrt{(-3)^2 + (-4)^2 + (5)^2}\right) = \frac{-76}{\sqrt{160} \cdot \sqrt{50}}$		

June 2014 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Mark	s
8.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$			
(a)	$\overrightarrow{AB} = \pm ((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})); = \mathbf{i} - \mathbf{j} + \mathbf{k}$		M1; A1	
(b)	$\{l_1: \mathbf{r} \} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$		B1ft	[2]
(c)	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$		M1	[1]
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$	Applies dot product formula between		
	$AR \bullet PR$ $\begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$	their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$	M1	
	$\{\cos\theta = \} \frac{ \overrightarrow{AB} \cdot \overrightarrow{PB} }{ \overrightarrow{AB} \cdot \overrightarrow{PB} } = \frac{(3)(3)^{2} + (-1)^{2} + (1)^{2} \cdot \sqrt{(-1)^{2} + (1)^{2} + (5)^{2}}}{\sqrt{(1)^{2} + (-1)^{2} + (1)^{2} \cdot \sqrt{(-1)^{2} + (1)^{2} + (5)^{2}}}}$	and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.		
	$\{\cos \theta = \} \frac{\overline{AB} \bullet \overline{PB}}{ \overline{AB} \cdot \overline{PB} } = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}}$ $\{\cos \theta\} = \frac{-1 - 1 + 5}{\sqrt{3} \cdot \sqrt{27}} = \frac{3}{9} = \frac{1}{3}$	Correct proof	A1 cso	
				[3]

(d)
$$\{l_2 : \mathbf{r} = \} \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = 4\mathbf{min} = 4\mathbf{k}$, or a multiple of their \overline{AB} . Correct vector equation. All ft
$$\overline{OC} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
 or
$$\overline{OD} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} :$$
 Either $\overline{OP} + 4\mathbf{min} = 4\mathbf{k}$ MI
$$\overline{AB} = 4\mathbf{k} =$$

8. (f) Way 2	$h = \overrightarrow{CB} = \sqrt{(-2)^2 + (2)^2 + (4)^2} = \sqrt{24} = 2\sqrt{6} = 4.8989$ Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $ $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$	'	
	Area $ABCD = \frac{1}{2}\sqrt{24}\left(\sqrt{3} + 2\sqrt{3}\right)$ or $\frac{1}{2}\sqrt{24}\sqrt{3} + \sqrt{24}\sqrt{3}$ $\frac{1}{2}h$ (their AB + their CD	dM1 oe	
	$= \frac{9\sqrt{2}}{2}$	Al cso	
War.2	Finds the same of side or triangle ADD on ADD on BCD and trial or the small		[4]
Way3	Finds the area of either triangle APB or APD or BCP and triples the result.		
8. (f)	Area $\triangle APB = \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin\theta$ Attempts $\frac{1}{2}$ (their AB)(their PB) $\sin\theta$	M1	
	$= \frac{1}{2} \sqrt{3} (3\sqrt{3}) \sin(70.5) \qquad \frac{1}{2} \sqrt{3} (3\sqrt{3}) \sin(70.5) \text{ or } 3\sqrt{3}$	1	
	or awrt 4.24 or equivalent	t	
	Area $ABCD = 3(3\sqrt{2})$ $3 \times Area \text{ of } \Delta APA$	dM1	
	$=9\sqrt{2}$	Al cso	
			[4]

		Question 8 Notes
8. (a)	M1	Finding the difference (either way) between \overrightarrow{OB} and \overrightarrow{OA} .
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.
		(1)
	A1	$ \mathbf{i} - \mathbf{j} + \mathbf{k} $ or $ -1 $ or $(1, -1, 1)$ or benefit of the doubt -1
		$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt -1
(b)	R1ft	$ \{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed through from (a).} $
(-)	2110	$\begin{pmatrix} 7 & \begin{pmatrix} 1 \end{pmatrix} & \begin{pmatrix} 8 \end{pmatrix} & \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix}$
	Note	$\mathbf{r} = $ is not needed.
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} .
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.
	M1	Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$ and their $(\overline{PB} \text{ or } \overline{BP})$.
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.
	Note	If candidate starts by applying $\frac{\overline{AB} \bullet \overline{PB}}{ \overline{AB} \cdot \overline{PB} }$ correctly (without reference to $\cos \theta =$)
		they can gain both 2 nd M1 and A1 mark.
	Note	Award the final A1 mark if candidate achieves $\{\cos\theta\} = \frac{1}{3}$ by either taking the dot product between
		(i) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$. Ignore if any of these vectors are labelled incorrectly.

	Note	(iii) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ They will usually find $\{\cos \theta\} = -\frac{1}{3}$ or may fudg	$e\left\{\cos\theta\right\} = \frac{1}{3}.$	o the direction
		of their vectors then this can be given A1 cso		
(c)	$\overrightarrow{PB} = \overrightarrow{0}$	ative Method 1: The Cosine Rule $\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$	Mark in the same way as the main scheme.	M1
		$ \overline{B} = \sqrt{27}, \overline{AB} = \sqrt{3} \text{ and } \overline{PA} = \sqrt{24}$ $ \overline{PA} = (\sqrt{27})^2 + (\sqrt{3})^2 - 2(\sqrt{27})(\sqrt{3})\cos\theta$	Applies the cosine rule the correct way round	M1 oe
	$\cos \theta$	$=\frac{27+3-24}{18}=\frac{1}{3}$	Correct proof	Al cso
8. (c)	Alterna	ntive Method 2: Right-Angled Trigonometry		191
		$\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$	Mark in the same way as the main scheme.	M1
	١ '	$(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$ $\vec{3} \cdot \vec{PA} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$	Confirms ΔPAB is right-angled	MI
	So, {co	$\cos\theta = \frac{AB}{PB} \Rightarrow \left\{ \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3} \right\}$	Correct proof	A1 cso [3]
(d)	М1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu$	and with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} = \text{their } \overline{AB}$	
	or a multiple of their \overline{AB} found in part (a). Writing $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \mathbf{d}$, where $\mathbf{d} = \text{their } \overline{AB}$ or a multiple of their \overline{AB} found in part (a). Note $\mathbf{r} = \text{is not needed}$.			
	Note	Using the same scalar parameter as in part (b) is f	ine for A1.	
(e)	M1 Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . Note A1ft A1ft Both sets of coordinates are correct. Ignore labelling of C , D Both sets of coordinates are correct. Ignore labelling of C , D			
	Note	You can follow through either or both accuracy n	narks in this part using their \overrightarrow{AB} from p	eart (a).

(f) Way 1:
$$\frac{h}{\text{their}|PB|} = \sin \theta$$

Way 2: Attempts $|PA|$ or $|CB|$

Way 3: Attempts $\frac{1}{2}$ (their PB)(their AB) $\sin \theta$

Note Finding AD by itself is M0.

A1 Either

• $h = \sqrt{27} \sin(70.5...)$ or $|PA| = |CB| = \sqrt{24}$ or equivalent. (See Way 1 and Way 2) or

• the area of either triangle APB or APD or $BDP = \frac{1}{2} \sqrt{3} \left(3\sqrt{3} \right) \sin \left(70.5... \right)$ o.e. (See Way 3).

dM1 which is dependent on the 1st M1 mark.

A full method to find the area of trapezium $ABCD$. (See Way 1, Way 2 and Way 3).

A1 $9\sqrt{2}$ from a correct solution only.

Note A decimal answer of 12.7279... (without a correct exact answer) is A0.

June 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Sci	heme		Marks	s
8.	$l: \mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, A(3, -1)$	$(2,6), \overline{OP} = \begin{pmatrix} -p\\0\\2p \end{pmatrix}$			
(a)	$\left\{ \overline{PA} \right\} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix}$	$\left\{ \overline{AP} \right\} = \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}$	Finds the difference between \overrightarrow{OA} and \overrightarrow{OP} . Ignore labelling.	M1	
	$= \begin{pmatrix} 3+p\\-2\\6-2p \end{pmatrix}$	$= \begin{pmatrix} -3 - p \\ 2 \\ 2p - 6 \end{pmatrix}$	Correct difference.	A1	
	$\begin{pmatrix} 3+p \\ -2 \\ 6-2p \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = 6+2$	2p - 4 - 6 + 2p = 0	See notes.	M1	
	p	= 1		A1 cso	[4]

(b)
$$|AP| = \sqrt{4^2 + (-2)^2 + 4^2}$$
 or $|AP| = \sqrt{(-4)^2 + 2^2 + (-4)^2}$ See notes. M1
So, PA or $AP = \sqrt{36}$ or 6 **cao** A1 **cao** It follows that, $AB = "6" \{= PA \}$ or $PB = "6\sqrt{2}" \{= \sqrt{2}PA \}$ See notes. B1 ft

{Note that
$$AB = "6" = 2$$
 (the modulus of the direction vector of l)}

$$\overline{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
or
$$\begin{array}{c} \text{Uses a correct method in order} \\ \text{to find both possible sets of} \\ \text{coordinates of } B.$$

$$\overline{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{ and } \overline{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 7 \\ 2 \\ 3 \end{pmatrix} \text{ and } \begin{pmatrix} -1 \\ -6 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 7 \\ 2 \\ 3 \\ 3 \end{pmatrix} \text{ and } \begin{pmatrix} -1 \\ -6 \\ 3 \end{pmatrix}$$

[5]

Notes for Question 8

8. (a) M1: Finds the difference between OA and OP. Ignore labelling.

If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.

A1: Accept any of
$$\begin{pmatrix} 3+p\\-2\\6-2p \end{pmatrix}$$
 or $(3+p)\mathbf{i}-2\mathbf{j}+(6-2p)\mathbf{k}$ or $\begin{pmatrix} -3-p\\2\\2p-6 \end{pmatrix}$ or $(-3-p)\mathbf{i}+2\mathbf{j}+(2p-6)\mathbf{k}$

Notes for Question 8 Continued

8. (a) **M1:** Applies the formula $\overline{PA} \bullet \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ or $\overline{AP} \bullet \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ correctly to give a linear equation in p which is set equal to

zero. **Note:** The dot product can also be with $\pm k \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$. Eg: Some candidates may find

$$\begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ -5 \end{pmatrix}, \text{ for instance, and use this in their dot product which is fine for M1.}$$

A1: Finds p = 1 from a correct solution only.

Note: The direction of subtraction is not important in part (a).

(b) M1: Uses their value of p and Pythagoras to obtain a numerical expression for either AP or PA or AP^2 or Eg: PA or AP = $\sqrt{4^2 + (-2)^2 + 4^2}$ or $\sqrt{(-4)^2 + 2^2 + (-4)^2}$ or $\sqrt{4^2 + 2^2 + 4^2}$ or PA^2 or $AP^2 = 4^2 + (-2)^2 + 4^2$ or $(-4)^2 + 2^2 + (-4)^2$ or $4^2 + 2^2 + 4^2$

A1: $AP \text{ or } PA = \sqrt{36} \text{ or } 6 \text{ cao } \text{ or } AP^2 = 36 \text{ cao}$

B1ft: States or it is clear from their working that AB = "6" {= their evaluated PA } or

 $PB = "6" \sqrt{2} \left\{ = \sqrt{2} \text{ (their evaluated } PA) \right\}.$

Note: So a correct follow length is required here for either AB or PB using their evaluated PA.

Note: This mark may be found on a diagram.

Note: If a candidate states that |AP| = |AB| and then goes on to find |AP| = 6 then the B1 mark can be implied.

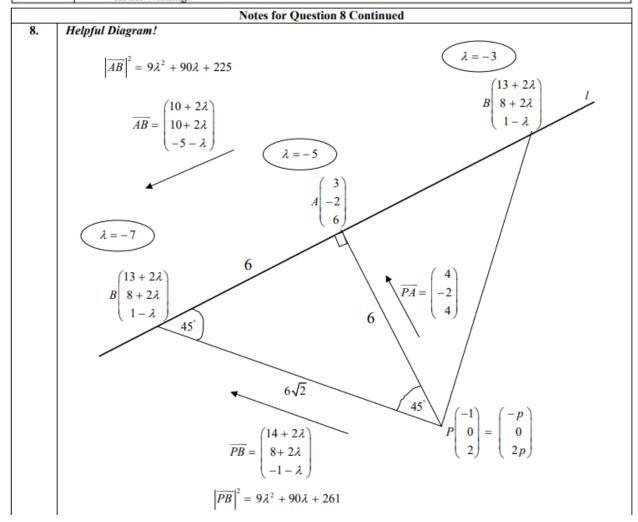
IMPORTANT: This mark may be implied as part of expressions such as:

$$\{AB = \} \sqrt{(10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2} = \mathbf{6} \text{ or } \{AB^2 = \} (10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2 = \mathbf{36}$$
 or
$$\{PB = \} \sqrt{(14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2} = \mathbf{6}\sqrt{2} \text{ or } \{PB^2 = \} (14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2 = \mathbf{72}$$

M1: Uses a full method in order to find both possible sets of coordinates of B:

Eg 1:
$$\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
 Eg 2: $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$

Note: If a candidate achieves at least one of the correct (7, 2, 4) or (-1, -6, 8) then award SC M1 here.


Note:
$$\overline{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
 and $\overline{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is M0.

A1: For both (7, 2, 4) and (-1, -6, 8). Accept vector notation or $\mathbf{i}, \mathbf{j}, \mathbf{k}$ notation.

Note: All the marks are accessible in part (b) if p = 1 is found from incorrect working in part (a).

Note: Imply M1A1B1 and award M1 for candidates who write: $\overline{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$, with little or no

earlier working.

8. (b) Way 2: Setting
$$AB = "6"$$
 or $AB^2 = "36"$ Note: It is possible for you to apply the main scheme for Way 2.
$$\left\{ AB = "6" \Rightarrow AB^2 = "36" \Rightarrow \right\} \quad (10 + 2\lambda)^2 + (10 + 2\lambda)^2 + (-5 - \lambda)^2 = "36" \quad \text{B1ft could be implied here.}$$

$$9\lambda^2 + 90\lambda + 225 = 36 \implies 9\lambda^2 + 90\lambda + 189 = 0$$

$$\lambda^2 + 10\lambda + 21 = 0 \Rightarrow (\lambda + 3)(\lambda + 7) = 0$$

 $\lambda = -3, -7$

Then apply final M1 A1 as in the original scheme. ... M1 A1

8. (b) Way 3: Setting
$$PB = "6\sqrt{2}"$$
 or $PB^2 = "72"$ Note: It is possible for you to apply the main scheme for Way 3. $\{PB = "6"\sqrt{2} \Rightarrow PB^2 = "72" \Rightarrow\}$ $(14 + 2\lambda)^2 + (8 + 2\lambda)^2 + (-1 - \lambda)^2 = "72"$ B1ft could be implied here. $9\lambda^2 + 90\lambda + 261 = 72 \Rightarrow 9\lambda^2 + 90\lambda + 189 = 0$

$$\lambda^2 + 10\lambda + 21 = 0 \Rightarrow (\lambda + 3)(\lambda + 7) = 0$$
$$\lambda = -3, -7$$

Then apply final M1 A1 as in the original scheme. ... M1 A1

Notes for Question 8 Continued

(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for 8. (b) Way 4).

Way 4: Using the dot product formula between \overrightarrow{PA} and \overrightarrow{PB} , ie: $\cos 45^{\circ} = \frac{\overrightarrow{PA} \cdot \overrightarrow{PB}}{|\overrightarrow{PA}| |\overrightarrow{PB}|}$

$$\overrightarrow{PA} \bullet \overrightarrow{PB} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 14 + 2\lambda \\ 8 + 2\lambda \\ -1 - \lambda \end{pmatrix} = 56 + 8\lambda - 16 - 4\lambda - 4 - 4\lambda = 36$$

$$\left\{\cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{36}{6\sqrt{9\lambda^2 + 90\lambda + 261}}$$

$$\frac{1}{2} = \frac{36}{9\lambda^2 + 90\lambda + 261}$$

$$9\lambda^2 + 90\lambda + 261 = 72 \implies 9\lambda^2 + 90\lambda + 189 = 0$$

$$\lambda^2 + 10\lambda + 21 = 0 \Rightarrow (\lambda + 3)(\lambda + 7) = 0$$

For finding
$$|\overline{PA}|$$
 as before. M1
 $\sqrt{36}$ or 6 A1 cao
 $|\overline{PB}| = \sqrt{9\lambda^2 + 90\lambda + 261}$ B1 oe

Then apply final M1 A1 as in the original scheme. ... M1 A1

8. (b) (You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 5).

Way 5: Using the dot product formula between
$$\overline{AB}$$
 and \overline{PB} , ie: $\cos 45^{\circ} = \frac{\overline{AB} \bullet \overline{PB}}{|\overline{AB}| |\overline{PB}|}$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\begin{pmatrix} 10 + 2\lambda \\ 10 + 2\lambda \\ -5 - \lambda \end{pmatrix} \bullet \begin{pmatrix} 14 + 2\lambda \\ 8 + 2\lambda \\ -1 - \lambda \end{pmatrix}}{\sqrt{9\lambda^{2} + 90\lambda + 225} \sqrt{9\lambda^{2} + 90\lambda + 261}}$$
Attempts the dot product formula between \overline{AB} and \overline{PB} .

Correct statement with $|\overline{AB}|$ and $|\overline{PB}|$ simplified as shown.

Either $|\overline{AB}| = \sqrt{9\lambda^{2} + 90\lambda + 225}$ or $|\overline{PB}| = \sqrt{9\lambda^{2} + 90\lambda + 261}$

$$\begin{cases} \cos 45^{\circ} = \end{cases} \frac{1}{\sqrt{2}} = \frac{140 + 20\lambda + 28\lambda + 4\lambda^{2} + 80 + 20\lambda + 16\lambda + 4\lambda^{2} + 5 + 5\lambda + \lambda + \lambda^{2}}{\sqrt{9\lambda^{2} + 90\lambda + 225}} \frac{1}{\sqrt{9\lambda^{2} + 90\lambda + 261}} \\ \begin{cases} \cos 45^{\circ} = \end{cases} \frac{1}{\sqrt{2}} = \frac{9\lambda^{2} + 90\lambda + 225}{\sqrt{9\lambda^{2} + 90\lambda + 225}} \frac{1}{\sqrt{9\lambda^{2} + 90\lambda + 261}} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)^{2}}{(9\lambda^{2} + 90\lambda + 225)(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)} \\ \frac{1}{2} = \frac{(9\lambda^{2} + 90\lambda + 225)}{(9\lambda^{2} + 90\lambda + 261)}$$

Then apply final M1 A1 as in the original scheme. ... M1 A1

Notes for Question 8 Continued

8. (b) Way 6:

$$\overrightarrow{PA} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \text{ and direction vector of } l \text{ is } \mathbf{d} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$

So,
$$|\overrightarrow{PA}| = 2 |\mathbf{d}|$$
 or $PA = 2 |\mathbf{d}|$

A correct statement relating these distances (and not vectors) M1 A1 B1

Apply final M1 A1 as in the original scheme. ... M1 A1

Note: $\overrightarrow{PA} = 2\mathbf{d}$ with no other creditable working is M0A0B0...

Note: $\overrightarrow{PA} = 2\mathbf{d}$, followed by $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is M1A1B1M1 and the final A1 mark is for both sets of

correct coordinates.

Question Number	Scheme		Marks
8.	(a) $AB = \begin{pmatrix} 8 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 10 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$		M1 A1
	(b) $\mathbf{r} = \begin{pmatrix} 10\\2\\3 \end{pmatrix} + t \begin{pmatrix} -2\\1\\1 \end{pmatrix}$	$\mathbf{r} = \begin{pmatrix} 8 \\ 3 \\ 4 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$	M1 A1ft
	(c) $CP = \begin{pmatrix} 10 - 2t \\ 2 + t \\ 3 + t \end{pmatrix} - \begin{pmatrix} 3 \\ 12 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 - 2t \\ t - 10 \\ t \end{pmatrix}$		M1 A1
	$\begin{pmatrix} 7-2t \\ t-10 \\ t \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = -14+4t+t-10+t=0$ Leading to $t=4$		M1
	Position vector of P is $\begin{pmatrix} 10-8\\2+4\\3+4 \end{pmatrix} = \begin{pmatrix} 2\\6\\7 \end{pmatrix}$		M1 A1
	Alternative working for (c)		
	$\operatorname{cur}_{CP} = \begin{pmatrix} 8 - 2t \\ 3 + t \\ 4 + t \end{pmatrix} - \begin{pmatrix} 3 \\ 12 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 - 2t \\ t - 9 \\ t + 1 \end{pmatrix}$		M1 A1
	$ \begin{pmatrix} 5-2t \\ t-9 \\ t+1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = -10+4t+t-9+t+1=0 $		- M1
	Leading to $t=3$ $(8-6)$ (2)		A1
	Position vector of P is $\begin{pmatrix} 8-6\\3+3\\4+3 \end{pmatrix} = \begin{pmatrix} 2\\6\\7 \end{pmatrix}$		M1 A1

Question Number	Scheme		Marks
7.	$\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$, $\overrightarrow{OB} = 5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}$, $\left\{ \overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k} \right\}$ &	$\overrightarrow{OD} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$	
(a)	$\overline{AB} = \pm ((5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) - (2\mathbf{i} - \mathbf{j} + 5\mathbf{k})); = 3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$		M1; A1
(b)	$l: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$	See notes	M1 A1ft
	Let $\theta = B\hat{A}D$ $A \qquad \sqrt{43} \qquad B \qquad I$ $C \qquad \qquad \begin{pmatrix} -1 \\ 2 \\ -3 \\ \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \\ \end{pmatrix}$	Let <i>d</i> be the shortest distance from <i>C</i> to <i>l</i> .	[2]
(c)	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} -1\\1\\4 \end{pmatrix} - \begin{pmatrix} 2\\-1\\5 \end{pmatrix} = \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or } \overrightarrow{DA} = \begin{pmatrix} 3\\-2\\1 \end{pmatrix}$ $\cos \theta = \frac{\overrightarrow{AB} \bullet \overrightarrow{AD}}{ \overrightarrow{AB} \cdot \overrightarrow{AD} } = \frac{\begin{pmatrix} 3\\3\\5 \end{pmatrix} \bullet \begin{pmatrix} -3\\2\\-1 \end{pmatrix}}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}}$	Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$ and their $(\overline{AD} \text{ or } \overline{DA})$.	M1 M1
	$\cos \theta = \pm \left(\frac{-9 + 6 - 5}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}} \right)$	Correct followed through expression or equation .	Al√
	$\cos \theta = \frac{-8}{\sqrt{43} \sqrt{14}} \Rightarrow \theta = 109.029544 = 109 \text{ (nearest °)}$	awrt 109	Al cso AG
(d)	$\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OD} + \overrightarrow{AB} = (-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) + (3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$ $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OB} + \overrightarrow{AD} = (5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) + (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})$		[4] M1
	So, $\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}$		A1
(e)	Area $ABCD = (\frac{1}{2}(\sqrt{43})(\sqrt{14})\sin 109^\circ); \times 2 = 23.19894905$	awrt 23.2	[2] M1; dM1 A1 [3]
(f)	$\frac{d}{\sqrt{14}} = \sin 71$ or $\sqrt{43} d = 23.19894905$		M1
	$\sqrt{14}$ $\therefore d = \sqrt{14} \sin 71^{\circ} = 3.537806563$	awrt 3.54	A1 [2] 15

7. (a) M1: Finding the difference between
$$\overline{OB}$$
 and \overline{OA} .

Can be implied by two out of three components correct in 3i + 3j + 5k or -3i - 3j - 5k

A1:
$$3i + 3j + 5k$$

(b) M1: An expression of the form (3 component vector)
$$\pm \lambda$$
 (3 component vector)

A1ft:
$$\mathbf{r} = \overline{OA} + \lambda \left(\text{their } \pm \overline{AB} \right) \text{ or } \mathbf{r} = \overline{OB} + \lambda \left(\text{their } \pm \overline{AB} \right).$$

Note: Candidate must begin writing their line as $\mathbf{r} = \text{ or } l = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \text{ So, Line} = \dots \text{ would be A0.}$

(c) M1: An attempt to find either the vector
$$\overrightarrow{AD}$$
 or \overrightarrow{DA} .

Can be implied by two out of three components correct in -3i + 2j - k or 3i - 2j + k, respectively.

M1: Applies dot product formula between their
$$(\overline{AB} \text{ or } \overline{BA})$$
 and their $(\overline{AD} \text{ or } \overline{DA})$.

A1ft: Correct followed through expression or **equation**. The dot product must be correctly followed through correctly and the square roots although they can be un-simplified must be followed through correctly.

Award the final A1 mark if candidate achieves awrt 109 by either taking the dot product between:

(i)
$$\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$$
 and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (ii) $\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$. Ignore if any of these vectors are labelled incorrectly.

Award A0, cso for those candidates who take the dot product between:

(iii)
$$\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$$
 and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (iv) $\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$.

They will usually find awrt 71 and apply 180 – awrt 71 to give awrt 109. If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A1 cso. If still in doubt, here, send to review.

(d) M1: Applies either
$$\overrightarrow{OD}$$
 + their \overrightarrow{AB} or \overrightarrow{OB} + their \overrightarrow{AD} .

This mark can be implied by two out of three correctly followed through components in their \overrightarrow{OD} .

A1: For
$$2i + 4j + 9k$$
.

(e) M1:
$$\frac{1}{2}$$
 (their AB) (their CB) sin (their 109° or 71° from (b)). Awrt 11.6 will usually imply this mark.

dM1: Multiplies this by 2 for the parallelogram. Can be implied.

Note: $\frac{1}{2}$ ((their AB + their AB))(their CB)sin(their 109° or 71° from (b))

(f)

M1:
$$\frac{d}{\text{their } AD} = \sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)}) \text{ or (their } AB) d = (\text{their Area } ABCD)$$

Award M0 for (their AB) in part (f), if the area of their parallelogram in part (e) is (their AB) (their CB).

Award M0 for
$$\frac{d}{\text{their }\sqrt{43}} = \sin 71$$
 or $(\text{their }\sqrt{14})d = 23.19894905...$

Note: Some candidates will use their answer to part (f) in order to answer part (e).

$$\overline{AD} = \overline{OD} - \overline{OA} = \begin{pmatrix} -1\\1\\4 \end{pmatrix} - \begin{pmatrix} 2\\-1\\5 \end{pmatrix} = \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or } \overline{DA} = \begin{pmatrix} 3\\-2\\1 \end{pmatrix}$$

$$\overline{DB} = \overline{OD} - \overline{OA} = \begin{pmatrix} 5\\2\\10 \end{pmatrix} - \begin{pmatrix} -1\\1\\4 \end{pmatrix} = \begin{pmatrix} 6\\1\\6 \end{pmatrix} \text{ or } \overline{BD} = \begin{pmatrix} -6\\-1\\-6 \end{pmatrix}$$
So $|\overline{AB}| = \sqrt{43}$, $|\overline{AD}| = \sqrt{14}$ and $|\overline{DB}| = \sqrt{73}$

$$\cos \theta = \frac{\left(\sqrt{43}\right)^2 + \left(\sqrt{14}\right)^2 - \left(\sqrt{73}\right)^2}{2\sqrt{43}\sqrt{14}}$$

M1: Cosine rule structure of $\cos \theta = \frac{a^2 + b^2 - c^2}{2ab}$ assigned each of $|\overline{AB}|$, $|\overline{AD}|$ and $|\overline{DB}|$ in any order as their a, b and c.

A1: Correct application of cosine rule.

$$\left\{\cos\theta = \frac{-16}{2\sqrt{43}.\sqrt{14}} \Rightarrow \theta = 109.029544...\right\} = 109 \text{ (nearest}^{\circ}\text{)} \quad \text{A1: awrt 109 (no errors seen)}. \text{ AG}$$

Alternative method for part (d):

$$\overline{OE} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$$

$$\overline{DE} = \begin{pmatrix} 2+3\lambda \\ -1+3\lambda \\ 5+5\lambda \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3+3\lambda \\ -2+3\lambda \\ 1+5\lambda \end{pmatrix}$$

$$\overrightarrow{DE} \bullet \overrightarrow{AB} = 0 \implies \begin{pmatrix} 3 + 3\lambda \\ -2 + 3\lambda \\ 1 + 5\lambda \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix} = 0$$

$$9 + 9\lambda - 6 + 9\lambda + 5 + 3\lambda = 0 \Rightarrow \lambda = -\frac{8}{43}$$

$$\overrightarrow{DE} = \begin{pmatrix} 2 + 3\lambda \\ -1 + 3\lambda \\ 5 + 5\lambda \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{103}{43} \\ -\frac{110}{43} \\ \frac{3}{43} \end{pmatrix}$$

dM1: Uses their value of λ to find \overline{DE}

progresses to find a value of λ

M1: Takes the dot product between \overline{DE} and \overline{AB} and

Length DE = 3.537806563...

A1: awrt 3.54

Question Number	Scheme	Marks	
6.	(a) i: $6-\lambda=-5+2\mu$ j: $-3+2\lambda=15-3\mu$ Any two equations leading to $\lambda=3$, $\mu=4$ $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + 3 \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix}$ $\mathbf{k}: \text{ LHS} = -2+3(3)=7, \text{ RHS} = 3+4(1)=7$ (As LHS = RHS, lines intersect) Alternatively for B1, showing that $\lambda=3$ and $\mu=4$ both give $\begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix}$ (b) $\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = -2-6+3=\sqrt{14}\sqrt{14\cos\theta} (\theta\approx110.92^\circ)$	M1 M1 A1 M1 A1 B1	(6)
	Acute angle is 69.1° awrt 69.1	A1	(3)
	(c) $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} (\Rightarrow B \text{ lies on } l_1)$	B1	(1)
	(d) Let d be shortest distance from B to l_2		
	$ \begin{array}{c} \text{ULLIMIT} \\ AB = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix} $ $ \begin{array}{c} A \\ \theta \\ \end{array} $	M1	
	$\begin{vmatrix} \mathbf{AB} \\ AB \end{vmatrix} = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ awrt 7.5	A1	
	$\frac{d}{\sqrt{56}} = \sin \theta$ $d = \sqrt{56} \sin 69.1^{\circ} \approx 6.99$ awrt 6.99	M1 A1	(A)
	$d = \sqrt{56} \sin 69.1^{\circ} \approx 6.99$ awrt 6.99	l	(4) [14]

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Marks	
4. (a)	$\overrightarrow{AB} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = -3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$		M1 A1	(2)
(b)	$\mathbf{r} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \lambda \left(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k} \right)$		M1 A1ft	(2)
	or $\mathbf{r} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda \left(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k} \right)$			
(c)	$\overrightarrow{AC} = 2\mathbf{i} + p\mathbf{j} - 4\mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$			
	$=\mathbf{i}+(p+3)\mathbf{j}-6\mathbf{k}$	or \overrightarrow{CA}	B1	
	$\overrightarrow{AC}.\overrightarrow{AB} = \begin{pmatrix} 1 \\ p+3 \\ -6 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 5 \\ -3 \end{pmatrix} = 0$ $-3+5p+15+18=0$		M1	
	Leading to $p = -6$		M1 A1	(4)
(d)	$AC^{2} = (2-1)^{2} + (-6+3)^{2} + (-4-2)^{2} (=46)$ $AC = \sqrt{46}$	account assert 6.9	M1	
	$AC = \sqrt{40}$	accept awrt 6.8	A1	(2) [10]

Question Number	Scheme	Marks
7.	(a) j components $3+2\lambda=9 \Rightarrow \lambda=3$	M1 A1 A1 (3)
	(b) Choosing correct directions or finding \overrightarrow{AC} and \overrightarrow{BC}	M1
	$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = 5 + 2 = \sqrt{6}\sqrt{29}\cos \angle ACB$ use of scalar product	M1 A1
	$\angle ACB = 57.95^{\circ}$ awrt 57.95°	A1 (4)
	(c) $A:(2,3,-4) B:(-5,9,-5)$ $\overrightarrow{AC} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}, \overrightarrow{BC} = \begin{pmatrix} 10 \\ 0 \\ 4 \end{pmatrix}$	
	$AC^2 = 3^2 + 6^2 + 3^2 \Rightarrow AC = 3\sqrt{6}$	M1 A1
	$BC^2 = 10^2 + 4^2 \Rightarrow BC = 2\sqrt{29}$	A1
	$\triangle ABC = \frac{1}{2}AC \times BC \sin \angle ACB$	
	$= \frac{1}{2} 3\sqrt{6} \times 2\sqrt{29} \sin \angle ACB \approx 33.5 \qquad 15\sqrt{5}, \text{ awrt } 34$	M1 A1 (5) [12]
	Alternative method for (b) and (c) (b) $A:(2,3,-4)$ $B:(-5,9,-5)$ $C:(5,9,-1)$ $AB^2 = 7^2 + 6^2 + 1^2 = 86$ $AC^2 = 3^2 + 6^2 + 3^2 = 54$	
	$BC^2 = 10^2 + 0^2 + 4^2 = 116$ Finding all three sides	M1
	$\cos \angle ACB = \frac{116 + 54 - 86}{2\sqrt{116}\sqrt{54}} (= 0.53066 \dots)$	M1 A1
	$\angle ACB = 57.95^{\circ}$ awrt 57.95° If this method is used some of the working may gain credit in part (c) and appropriate marks may be awarded if there is an attempt at part (c).	A1 (4)

Jan 2010 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks	
Q4	(a) $A: (-6, 4, -1)$ Accept vector forms	B1	(1)
	(b) $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} = 12 + 4 + 3 = \sqrt{4^2 + (-1)^2 + 3^2} \sqrt{3^2 + (-4)^2 + 1^2} \cos \theta$	M1 A1	
	$\cos \theta = \frac{19}{26}$ awrt 0.73	A1	(3)
	(c) X : (10, 0, 11) Accept vector forms	B1	(1)
	(d) $\overrightarrow{AX} = \begin{pmatrix} 10\\0\\11 \end{pmatrix} - \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$ Either order	M1	
	$= \begin{pmatrix} 16 \\ -4 \\ 12 \end{pmatrix} $ cao	A1	(2)
	(e) $ \overrightarrow{AX} = \sqrt{16^2 + (-4)^2 + 12^2}$	M1	
	$= \sqrt{416} = \sqrt{16 \times 26} = 4\sqrt{26} \implies \text{Do not penalise if consistent incorrect signs in (d)}$	A1	(2)
	(f) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	M1 M1	
	$d = \frac{4\sqrt{26}}{\frac{19}{26}} \approx 27.9$ awrt 27.9		(3) 12]